Exercise 64

(a) One way of defining $\sec ^{-1} x$ is to say that $y=\sec ^{-1} x \Longleftrightarrow \sec y=x$ and $0 \leq y<\pi / 2$ or $\pi \leq y<3 \pi / 2$. Show that, with this definition,

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}
$$

(b) Another way of defining $\sec ^{-1} x$ that is sometimes used is to say that $y=\sec ^{-1} x \Longleftrightarrow \sec y=x$ and $0 \leq y \leq \pi, y \neq \pi / 2$. Show that, with this definition,

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Solution

Let $y=\sec ^{-1} x$. Then

$$
\begin{equation*}
\sec y=x \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
\frac{d}{d x}(\sec y)=\frac{d}{d x}(x)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
(\sec y)(\tan y) \frac{d y}{d x}=1
$$

Solve for $d y / d x$ and write it in terms of sine and cosine.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{\sec y \tan y} \\
& =\frac{1}{\left(\frac{1}{\cos y}\right)\left(\frac{\sin y}{\cos y}\right)} \\
& =\frac{(\cos y)(\cos y)}{\sin y}
\end{aligned}
$$

Draw the implied right triangle from equation (1) and use it to determine the sine and cosine of y.

1

$\underline{\text { Part (a) }}$

If $0 \leq y<\pi / 2$ (Quadrant 1 -sine and cosine have to be positive), then

$$
\frac{d y}{d x}=\frac{(\cos y)(\cos y)}{\sin y}=\frac{\left(\frac{1}{x}\right)\left(\frac{1}{x}\right)}{\frac{\sqrt{x^{2}-1}}{x}}=\frac{x}{x^{2} \sqrt{x^{2}-1}}=\frac{1}{x \sqrt{x^{2}-1}} .
$$

If $\pi \leq y<3 \pi / 2$ (Quadrant 3-sine and cosine have to be negative), then

$$
\frac{d y}{d x}=\frac{(\cos y)(\cos y)}{\sin y}=\frac{\left(\frac{1}{x}\right)\left(\frac{1}{x}\right)}{\frac{\sqrt{x^{2}-1}}{x}}=\frac{x}{x^{2} \sqrt{x^{2}-1}}=\frac{1}{x \sqrt{x^{2}-1}} .
$$

Do note that since $x=\sec y, 0 \leq y<\pi / 2$ means that $1 \leq x<\infty$; and $\pi \leq y<3 \pi / 2$ means that $-\infty<x \leq-1$. Therefore, with this definition,

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}} .
$$

Part (b)

If $0 \leq y<\pi / 2$ (Quadrant 1 -sine and cosine have to be positive), then

$$
\frac{d y}{d x}=\frac{(\cos y)(\cos y)}{\sin y}=\frac{\left(\frac{1}{x}\right)\left(\frac{1}{x}\right)}{\frac{\sqrt{x^{2}-1}}{x}}=\frac{x}{x^{2} \sqrt{x^{2}-1}}=\frac{1}{x \sqrt{x^{2}-1}} .
$$

If $\pi / 2<y \leq \pi$ (Quadrant 2-sine has to be positive, and cosine has to be negative), then

$$
\frac{d y}{d x}=\frac{(\cos y)(\cos y)}{\sin y}=\frac{\left(\frac{1}{x}\right)\left(\frac{1}{x}\right)}{\frac{\sqrt{x^{2}-1}}{|x|}}=\frac{|x|}{x^{2} \sqrt{x^{2}-1}}=\frac{1}{|x| \sqrt{x^{2}-1}} .
$$

Do note that since $x=\sec y, 0 \leq y<\pi / 2$ means that $1 \leq x<\infty$; and $\pi / 2<y \leq \pi$ means that $-\infty<x \leq-1$. Therefore, with this definition, the two formulas for $d y / d x$ can be combined as

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

because $x=|x|$ on $1 \leq x<\infty$.

